Experimental determination of the electron effective masses and mobilities in each dimensionally-quantized subband in an In (x) Ga1-x As quantum well with InAs insertsстатья
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 9 апреля 2015 г.
Аннотация:HEMT structures with In0.53Ga0.47As quantum well are synthesized using molecular-beam epitaxy on InP substrates. The structures are double-side Si delta-doped so that two dimensionally-quantized subbands are occupied. The effect of the central InAs nanoinsert in the quantum well on the electron effective masses m* and mobilities in each subband is studied. For experimental determination of m*, the quantum mu (q) and transport mu (t) mobilities of the two-dimensional electron gas in each dimensionally-quantized subband, the Shubnikov-de Haas effect is measured at two temperatures of 4.2 and 8.4 K. The electron effective masses are determined by the temperature dependence of the oscillation amplitudes, separating the oscillations of each dimensionally-quantized subband. The Fourier spectra of oscillations are used to determine the electron mobilities mu (q) and mu (t) in each dimensionally-quantized subband. It is shown that m* decreases as the InAs-nanoinsert thickness d in the In0.53Ga0.47As quantum well and electron mobilities increase. The maximum electron mobility is observed at the insert thickness d = 3.4 nm.