Structural controls of CO 2 on Y, La and Sr incorporation in sodium-rich silicate - carbonate melts by in-situ high P-T EXAFSстатья

Статья опубликована в высокорейтинговом журнале
Статья опубликована в журнале из списка Web of Science и/или Scopus

Работа с статьей

[1] Structural controls of co 2 on y, la and sr incorporation in sodium-rich silicate - carbonate melts by in-situ high p-t exafs / J. Pohlenz, A. D. Rosa, O. Mathon et al. // Chemical Geology. — 2017. Carbonate-rich silicate and carbonate melts play a crucial role in deep Earth magmatic processes and their melt structure is a key parameter, as it controls physical and transport properties. Carbon-rich melts can be strongly enriched in trace elements, but the structural incorporation mechanisms of these elements are difficult to study because such melts generally cannot be quenched to glasses. In this contribution we investigate the influence of CO2 on the local environments of trace elements contained in silicate glasses with variable CO2 concentrations and in silicate and carbonate melts. The melts were studied in-situ at high pressure and temperature conditions using the Paris-Edinburgh press (2.2 to 2.6 GPa and 1200 to 1500 oC). The compositions studied include sodium-rich peralkaline silicate melts and glasses and carbonate melts similar to those occurring naturally at Oldoinyo Lengai volcano. The local environments of yttrium (Y), lanthanum (La) and strontium (Sr) were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy. Main findings of the study suggest: (1) In peralkaline silicate glasses the local structure of Y is unaffected by the CO2 content. Contrary, a slight increase of oxygen bond lengths of Sr and La is inferred with increasing CO2 content in peralkaline glasses, while they remain constant in glasses of even higher peralkalinity independent of the CO2 content. (2) In silicate melts of different CO2 contents Y-O bond lengths are constant, while a slight increase within carbonate melt compositions is deduced. On the other hand, a steady bond lengths increase over the whole compositional range is inferred for La-O and Sr-O. This may well be explained by distinct preferences of these elements for specific local environments. Based on these new data, we suggest potential mechanisms for the structural incorporation of these elements, a key step towards understanding their partitioning behavior in natural magmatic systems. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть