An equivariant Poincaré series of filtrations and monodromy zeta functionsстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 10 октября 2015 г.

Работа с статьей

[1] Campillo A., Delgado F., Gusein-Zade S. M. An equivariant poincaré series of filtrations and monodromy zeta functions // Revista Matematica Complutense. — 2015. — Vol. 28, no. 2. — P. 449–467. We define a new equivariant (with respect to a finite group action) version of the Poincaré series of a multi-index filtration as an element of the power series ring with the coefficients from a certain modification of the Burnside ring of the group. We give a formula for this Poincaré series of a collection of plane valuations in terms of a G-resolution of the collection. We show that, for filtrations on the ring of germs of functions in two variables defined by the curve valuations corresponding to the irreducible components of a plane curve singularity defined by an invariant function germ, in the majority of cases this equivariant Poincaré series determines the corresponding equivariant monodromy zeta functions defined earlier. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть