Аннотация:данной работе рассмотрена задача обучения распознаванию образов, в которой влияние некоторого скрытого фактора приводит к изменению свойств генеральной совокупности. Описание генеральной совокупности построено на модели логистической регрессии. Свойство нестационарности, вносимое изменениями исследуемого концепта, понимается как разделяющая гиперплоскость, параметры которой изменяются во времени. В представленной постановке задачи обучения эти параметры описываются как марковские случайные процессы. Для оценивания параметров применяется байесовский подход к классификации