The Maslov canonical operator on a pair of Lagrangian manifolds and asymptotic solutions of stationary equations with localized right-hand sidesстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 17 января 2018 г.

Работа с статьей


[1] The maslov canonical operator on a pair of lagrangian manifolds and asymptotic solutions of stationary equations with localized right-hand sides / A. Y. Anikin, S. Y. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux // Doklady Mathematics. — 2017. — Vol. 96, no. 1. — P. 406–410. The problem of constructing the asymptotics of the Green function for the Helmholtz operator h (2)Delta + n (2)(x), x a R (n) , with a small positive parameter h and smooth n (2)(x) has been studied by many authors; see, e.g., [1, 2, 4]. In the case of variable coefficients, the asymptotics was constructed by matching the asymptotics of the Green function for the equation with frozen coefficients and a WKB-type asymptotics or, in a more general situation, the Maslov canonical operator. The paper presents a different method for evaluating the Green function, which does not suppose the knowledge of the exact Green function for the operator with frozen variables. This approach applies to a larger class of operators, even when the right-hand side is a smooth localized function rather than a delta-function. In particular, the method works for the linearized water wave equations. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть