Conic projections of the triaxial ellipsoid: The projections for regional mapping of celestial bodiesстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 6 февраля 2018 г.

Работа с статьей

Прикрепленные файлы


Имя Описание Имя файла Размер Добавлен
1. Полный текст Полный текст статьй 10.3138_cart.52.4.2017-0002_v3.pdf 4,8 МБ 22 декабря 2017 [NyrtsovMV]

[1] Conic projections of the triaxial ellipsoid: The projections for regional mapping of celestial bodies / M. V. Nyrtsov, M. E. Fleis, M. M. Borisov, P. J. Stooke // Cartographica. — 2017. — Vol. 52, no. 4. — P. 322–331. In our previous works, we described the projections which that make it possible to construct maps of the celestial bodies in planetary scale - – the azimuthal and cylindrical projections of different distortion classes. However, for regions in the middle latitudes, it is advisable to use a conic projection, which has not been developed previously. In this investigation, we describe the development of three conic projections of a triaxial ellipsoid: a conic projection with true scale along meridians, an equal-area conic projection, and a quasi-conformal conic projection. The quasi-conformal conic projection is a projection close to the conformal projection in the neighbourhood of each meridian corresponding to a meridian section. We treat conic projections as projections in which the meridians are a bundle of straight lines emanating from a single point, and parallels are curves constructed in accordance with the selected character of distortion. This definition of conic projections of the triaxial ellipsoid allows us to connect in a system various classes of projections in a system. Thus, cylindrical projections can be considered as a limiting case of conic projections, and azimuthal projections as their special case. For the triaxial ellipsoid as a surface which that can be projected on a plane without distortions, we use a direct elliptic cone tangent to the ellipsoid. The projections are calculated, and maps in these projections are created for the first time. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть