Проблема Рисса–Радона–Фреше характеризации интеграловстатья

Статья опубликована в журнале из списка RSCI Web of Science
Статья опубликована в журнале из перечня ВАК
Дата последнего поиска статьи во внешних источниках: 29 мая 2015 г.

Работа с статьей


[1] Захаров В. К., Михалёв А. В., Родионов Т. В. Проблема Рисса–Радона–Фреше характеризации интегралов // Успехи математических наук. — 2010. — Т. 65, № 4. — С. 153–178. Статья посвящена обзору результатов, связанных с задачей характеризации интегралов как линейных функционалов. Она восходит к известному результату Ф. Рисса (1909) об интегральном представлении ограниченных линейных функционалов интегралами Римана–Стилтьеса на отрезке и напрямую связана со знаменитой теоремой И. Радона (1913) об интегральном представлении ограниченных линейных функционалов интегралами Лебега на компакте в {R}n. После работ И. Радона, М. Фреше и Ф. Хаусдорфа задача характеризации интегралов как линейных функционалов стала конкретизироваться как задача распространения теоремы Радона с {R}n на более общие топологические пространства с радоновскими мерами. Эта задача оказалась трудной, и ее решение имеет долгую и богатую историю. Поэтому ее естественно называть проблемой Рисса–Радона–Фреше характеризации интегралов. Важные этапы ее решения связаны с именами С. Банаха (1937–1938), С. Сакса (1937–1938), С. Какутани (1941), П. Халмоша (1950), Э. Хьюитта (1952), Р. Эдвардса (1953), Ю. В. Прохорова (1956), Н. Бурбаки (1969) и др. Существенные идейные и технические средства были разработаны А. Д. Александровым (1940–1943), М. Стоуном (1948–1949), Д. Фремлином (1974) и др. Большая часть статьи посвящена современному этапу решения проблемы, связанному с работами Х. Кёнига (1995–2008), В. К. Захарова и А. В. Михалёва (1997–2009) и др. Общее решение проблемы изложено в виде параметрической теоремы о характеризации интегралов, из которой непосредственно следуют характеризационные теоремы указанных авторов. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть