Fast numerical method of solving 3D coefficient inverse problem for wave equation with integral dataстатья

Статья опубликована в высокорейтинговом журнале
Статья опубликована в журнале из списка Web of Science и/или Scopus

Работа с статьей


[1] Bakushinsky A. B., Leonov A. S. Fast numerical method of solving 3d coefficient inverse problem for wave equation with integral data // Journal of Inverse and Ill-Posed Problems. — 2017. An inverse coefficient problem for time-dependent wave equation in three dimensions is under consideration. We are looking for a spatially varying coefficient of this equation knowing special time integrals of the wave field in an observation domain. The inverse problem has applications to the reconstruction of the refractive index of an inhomogeneous medium, as well as to acoustic sounding, medical imaging, etc. In the article, a new linear three-dimensional Fredholm integral equation of the first kind is introduced from which it is possible to find the unknown coefficient. We present and substantiate a numerical algorithm for solving this integral equation. The algorithm does not require significant computational resources and a long solution time. It is based on the use of fast Fourier transform under some a priori assumptions about unknown coefficient and observation region of the wave field. Typical results of solving this three-dimensional inverse problem on a personal computer for simulated data demonstrate high capabilities of the proposed algorithm. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть