Hybrid Self‐Assembled Molecular Interlayers for Efficient and Stable Inverted Perovskite Solar Cellsстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 7 мая 2025 г.
Аннотация:Self-assembled molecules (SAMs) have been widely employed as holetransport layers (HTLs) in inverted perovskite solar cells (PSCs). However,the carbazole core of [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid(Me-4PACz) is insufficiently effective for passivating defects at the “bottom” ofperovskite films, and the weak anchoring ability of phosphate groups towardthe NiOx substrate appears to promote the formation of dimers, trimers, andhigher-order oligomers, resulting in molecular accumulation. Herein, a noveltechnique is proposed to combine Me-4PACz with different thiol moleculesto modify the buried interface of PSCs. Molecular dynamics simulations andinfrared scattering-type scanning near-field optical microscopy (IR s-SNOM)results show that co-depositing Me-4PACz with thiol molecules forms hybridSAMs that densely and uniformly cover the NiOx surface. The island-likestructure of the hybrid SAMs serves as a template for forming the perovskitebulk heterojunction composed of interpenetrating networks of MA-richand FA-rich domains, enabling efficient charge generation and suppressedbimolecular recombination. Particularly, (3-mercaptopropyl) trimethoxysilane(MPTMS) effectively prevents Me-4PACz aggregation by forminga multi-dentate anchor on the NiOx surface through hydrolytic condensationof ─OCH3 groups, while its ─SH groups passivate uncoordinatedPb2+ at the perovskite/HTL interface. Consequently, the resultinghybrid SAMs-modified PSC achieve a champion photoelectric conversionefficiency (PCE) of 25.4% and demonstrated better operational stability.