## Bases of trigonometric polynomials consisting of shifts of Dirichlet kernelsстатья

Информация о цитировании статьи получена из Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 28 мая 2015 г.
• Автор:
• Журнал: Moscow University Mathematics Bulletin
• Том: 69
• Номер: 5
• Год издания: 2014
• Издательство: Allerton Press Inc.
• Местоположение издательства: United States
• Первая страница: 211
• Последняя страница: 216
• DOI: 10.3103/S0027132214050064
• Аннотация: The system of shifts of Dirichlet kernel on 2kπ2n+1, k = 0, ± 1, …, ± n, and the system of such shifts of conjugate Dirichlet kernels with 12 are orthogonal bases in the space of trigonometric polynomials of degree n. The system of shifts of the kernels Σnk=m cos kx and Σnk=m sin kx on 2kπn−m+1, k = 0, 1, …, n−m, is an orthogonal basis in the space of trigonometric polynomials with the components from m ⩾ 1 to n. There is no orthogonal basis of shifts of any function in this space for 0 < m < n.
• Добавил в систему: Родионов Тимофей Викторович

### Работа с статьей

 [1] Lukashenko T. P. Bases of trigonometric polynomials consisting of shifts of dirichlet kernels // Moscow University Mathematics Bulletin. — 2014. — Vol. 69, no. 5. — P. 211–216. The system of shifts of Dirichlet kernel on 2kπ2n+1, k = 0, ± 1, …, ± n, and the system of such shifts of conjugate Dirichlet kernels with 12 are orthogonal bases in the space of trigonometric polynomials of degree n. The system of shifts of the kernels Σnk=m cos kx and Σnk=m sin kx on 2kπn−m+1, k = 0, 1, …, n−m, is an orthogonal basis in the space of trigonometric polynomials with the components from m ⩾ 1 to n. There is no orthogonal basis of shifts of any function in this space for 0 < m < n. [ DOI ]