Robust enzyme design: Bioinformatic tools for improved protein stabilityстатья

Статья опубликована в высокорейтинговом журнале
Сведения о статье проверены и подтверждены

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 5 мая 2015 г.

Работа с статьей

[1] Suplatov D. A., Voevodin V. V., Švedas V. K. Robust enzyme design: Bioinformatic tools for improved protein stability // Biotechnology journal. — 2015. — Vol. 10, no. 3. — P. 344–355. The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Especially from an industrial perspective, enzyme stability is crucial for their practical application under the required reaction conditions. In this review we analyze bioinformatic-driven strategies that are used to predict structural changes in wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically and to predict particular structural changes which increase enzyme stability. Evolution has created a vast diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the merit to uncover this evolutionary code and provide a reproducible selection of hotspots – key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть