Аннотация:In this work we demonstrate the role of a ligand in formation of the conductive and electrocatalytically active copper microstructures produced using the in situ laser-induced metal deposition technique. For this purpose, the alkaline solutions of different concentrations containing copper(II) chloride and Rochelle salt, which is used as the ligand and exhibits both coordination and reduction properties, were studied by ATR-FTIR, UV–Vis, and Raman spectroscopy. According to spectroscopic studies and theoretical considerations, it was observed that at certain concentrations and proportion of copper(II) chloride and sodium potassium tartrate, and also within pH range between 7 and 13 the components of the plating copper solution form the tartrate copper complex, in which copper ion is coordinated by four hydroxyl groups of the ligand and two hydroxyl groups of the environment. As a result, the laser-induced deposition from solutions, where copper coordination occurs via hydroxyls rather than through other functional groups (e.g...