Аннотация:We report on the crystal growth, polarized spectroscopy, and laser operation of monoclinic Tm3+, Na+(Li+) codoped zinc monotungstate (ZnWO4) crystals. The Li+ codoping with an optimized Tm/Li ratio enables almost complete local charge compensation leading to better crystal quality, higher Tm segregation coefficient, and longer luminescence lifetime and ultimately the demonstration of laser operation. The modified Judd-Ofelt theory was employed to calculate the Tm3+ transition probabilities yielding a radiative lifetime of the 3F4 state of 2.59 ms. The corresponding intensity parameters are Ω2 = 5.194, Ω4 = 0.658, Ω6 = 0.471 [10−20 cm2] and α = 0.110 [10−4 cm]. Tm,Li:ZnWO4 features strongly polarized emission spectra extending beyond 2 μm owing to a large total Stark splitting of the ground-state, ΔE (3H6) = 644 cm−1. The stimulated-emission cross-section in this spectral range reaches 0.47 × 10−20 cm2 at 2015 nm for light polarization E || Np. The continuous-wave Tm,Li:ZnWO4 laser generated 282 mW at 1.98 μm with a slope efficiency of 14.7 %, and laser emission at 2.03 μm was also achieved.