Molecularly Smooth Single-Crystalline Films of Thiophene–Phenylene Co-Oligomers Grown at the Gas–Liquid Interfaceстатья

Статья опубликована в высокорейтинговом журнале

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 2 июня 2014 г.

Работа с статьей


[1] Molecularly smooth single-crystalline films of thiophene–phenylene co-oligomers grown at the gas–liquid interface / V. A. Postnikov, Y. I. Odarchenko, A. V. Iovlev et al. // Crystal Growth and Design. — 2014. — Vol. 14, no. 4. — P. 1726–1737. Single crystals of thiophene-phenelyne co-oligomers (TPCOs) have previously shown their potential for organic optoelectronics. Here we report on solution growth of large-area thin single-crystalline films of TPCOs at the gas-liquid interface by using solvent-antisolvent crystallization, isothermal slow solvent evaporation, and isochoric cooling. The studied co-oligomers contain identical conjugated core (5,5'-diphyenyl-2,2'-bithiophene) and different terminal substituents such as fluorine, trimethylsilyl, or trifluoromethyl. The fabricated films are molecularly smooth over areas larger than 10x10 ?m2, which is of high importance for organic field-effect devices. The low-defect electronic structure of the TPCO crystals is suggested from the mono-exponential kinetics of the PL decay measured in a wide dynamic range (up to four decades). The TPCO crystal structure is solved using a combination of X-ray and electron diffraction. The terminal substituents affect the crystal structure of TPCOs, bringing about the formation of a non-centrosymmetric crystal lattice with a crystal symmetry Cc for the bulkiest trimethylsilyl terminal groups, which is unusual for linear conjugated oligomers. Comparing the different crystal growth techniques, it is concluded that the solvent-antisolvent crystallization is the fastest and most robust for fabrication of single-crystalline TPCOs films. The possible nucleation and crystallization mechanisms operating at the gas-solution interface are discussed. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть