Nonlinear approximation of functions based on nonnegative least squares solverстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 15 февраля 2024 г.
Аннотация:Abstract In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter’s value is set on a more extensive set of points of the interval of permissible values. The proposed approach’s key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function x−α,0<α<1,x≥1$$ x⁻α ,ęrn0.3em 0<α <1,ęrn0.3em x\ge 1 $$. The second example concerns the approximation of the stretching exponential function exp(−xα),0<α<1$$ \exp łeft(-x^α\right),0<α <1 $$ at x≥0$$ x\ge 0 $$ by the sum of exponents.