 ## Mathematical models for problem of electromagnetic waves scattering from an irregular media interfaceтезисы доклада

Дата последнего поиска статьи во внешних источниках: 28 мая 2015 г.
• Авторы:
• Сборник: Day on diffraction’ 2003. International seminar
• Тезисы
• Год издания: 2003
• Место издания: Отдел оперативной полиграфии НИИХ СПбГУ Санкт-Петербург, Старый Петергоф
• Первая страница: 38
• Аннотация: Two mathematical models for solving the problem of reflection of a plane E- and H-polarized electromagnetic waves from an irregular media interface are investigated. In the first model, the reflecting surface is a transparent periodic wavy interface between two media, each of which is characterized by its permittivity and magnetic permeability. In the second model, which is the closest to the perfomed fuu-scale experiments, the reflecting surface is a perfectly conducting plane with a rather extensive finite pimply impedance section of the surface. To the numerical algorithms, use is made of the method of integral equations.
• Добавил в систему: Галишникова Тамара Николаевна

### Работа с тезисами доклада

  Ilinski A. S., Galishnikova T. N., Berezhnaja I. V. Mathematical models for problem of electromagnetic waves scattering from an irregular media interface // Day on diffraction’ 2003. International seminar. — Отдел оперативной полиграфии НИИХ СПбГУ Санкт-Петербург, Старый Петергоф, 2003. — P. 38. Two mathematical models for solving the problem of reflection of a plane E- and H-polarized electromagnetic waves from an irregular media interface are investigated. In the first model, the reflecting surface is a transparent periodic wavy interface between two media, each of which is characterized by its permittivity and magnetic permeability. In the second model, which is the closest to the perfomed fuu-scale experiments, the reflecting surface is a perfectly conducting plane with a rather extensive finite pimply impedance section of the surface. To the numerical algorithms, use is made of the method of integral equations.