Two-Colorings of Normed Spaces without Long Monochromatic Unit Arithmetic Progressionsстатья
Информация о цитировании статьи получена из
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 20 февраля 2024 г.
Аннотация:Given a natural $n$, we construct a two-coloring of $\mathbb{R}^n$ with the maximum metric satisfying the following. For any finite set of reals $S$ with diameter greater than $5^{n}$ such that the distance between any two consecutive points of $S$ does not exceed one, no isometric copy of $S$ is monochromatic. As a corollary, we prove that any normed space can be two-colored such that all sufficiently long unit arithmetic progressions contain points of both colors.