On the Wood bases of a Steenrod algebra mod pстатья

Дата последнего поиска статьи во внешних источниках: 17 октября 2017 г.

Работа с статьей


[1] Emelyanov D. Y. On the wood bases of a steenrod algebra mod p // Fundam. Prikl. Mat. — 2015. — Vol. 20, no. 3. — P. 83–90. Let p be an odd prime and let A_p be the mod p Steenrod algebra. Denote by {A}_p the subalgebra of A_p generated by the cohomology operations P^j, j⩾0, and let {Z}^n_k=P^{p^k+p^{k+1}+⋯+p^n} with 0⩽k⩽n. The monomial {Z}^{n_0}_{k_0}{Z}^{n_1}_{k_1}⋯{Z}^{n_r}_{k_r} is called a WY-monomial if the sequence of pairs I=((k_0,n_0),(k_1,n_1),…,(k_r,n_r)) satisfies certain conditions. The main result of this paper is that the set of WY-monomials is a basis of {A}_p for an odd prime p. The author defines the WZ-monomials in A_p and observes that the set of WZ-monomials is also a basis of {A}_p for an odd prime p. The results of this paper generalize the ones of R. M. W. Wood for the Steenrod algebra A_2 [Bull. London Math. Soc. 27 (1995), no. 4, 380–386; MR1335290].

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть