Аннотация:This article provides a detailed overview of the so-called Model Inversion(MI) attacks. These attacks aim at Machine-Learning-as-a-Service (MLaaS) platforms, and the goal is to use some well-prepared adversarial samples to attack target models and gain sensitive information from ML models, such as items from the dataset on which ML model was trained or ML model's parameters. This kind of attack now becomes an enormous threat to ML models, therefore, it is necessary to research this attack, understand how it will affect ML models, and based on this knowledge, we can propose some strategies that may improve the robustness of ML models.