Subcellular localization and self-interaction of plant-specific Nt-4/1 proteinстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 28 сентября 2013 г.

Работа с статьей

[1] Subcellular localization and self-interaction of plant-specific nt-4/1 protein / A. Solovyev, E. Minina, S. Makarova et al. // Biochimie. — 2013. — Vol. 95, no. 7. — P. 1360–1370. The Nicotiana tabacum Nt-4/1 protein is a plant-specific protein of unknown function. Analysis of bacterially expressed Nt-4/1 protein in vitro revealed that the protein secondary structure is mostly alpha-helical and suggested that it could consist of three structural domains. Earlier studies of At-4/1, the Arabidopsis thaliana-encoded ortholog of Nt-4/1, demonstrated that GFP-fused At-4/1 was capable of polar localization in plant cells, association with plasmodesmata, and cell-to-cell transport. Together with the At-4/1 ability to interact with a plant virus movement protein, these data supported the hypothesis of the At-4/1 protein involvement in viral transport through plasmodesmata. Studies of the Nt-4/1-GFP fusion protein reported in this paper revealed that the protein was localized to cytoplasmic bodies, which were co-aligned with actin filaments and capable of actin-dependent intracellular movement. The Nt-4/1-GFP bodies, being non-membrane structures, were found in association with the plasma membrane, the tubular endoplasmic reticulum and endosome-like structures. Bimolecular fluorescence complementation experiments and inhibition of nuclear export showed that the Nt-4/1 protein was capable of nuclear-cytoplasmic transport. The nuclear export signal (NES) was identified in the Nt-4/1 protein by site-directed mutagenesis. The Nt-4/1 NES mutant was localized to the nucleoplasm forming spherical bodies. Immunogold labeling and electron microscopy of cytoplasmic Nt-4/1-containing bodies and nuclear structures containing the Nt-4/1 NES mutant revealed differences in their fine structure. In mammalian cells, Nt-4/1-GFP formed cytoplasmic spherical bodies similar to those found for the Nt-4/1 NES mutant in plant cell nuclei. Using dynamic laser light scattering and electron microscopy, the Nt-4/1 protein was found to form multimeric complexes in vitro. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть