Perron effect of infinite change of values of characteristic exponents in any neighborhood of the originстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 февраля 2017 г.

Работа с статьей


[1] Izobov N. A., Il’in A. V. Perron effect of infinite change of values of characteristic exponents in any neighborhood of the origin // Differential Equations. — 2015. — Vol. 51, no. 11. — P. 1413–1424. We develop our earlier generalizations of the Perron effect of change of values of characteristic exponents for arbitrary parameters m > 1 and λ1 ≤ λ2 < 0 and an arbitrary bounded countable set β ⊂ [λ1,+∞), β ∩ [λ2,+∞) ≠ Ø, and show that there exists a two-dimensional differential system of linear approximation with bounded coefficients infinitely differentiable on the positive half-line and with characteristic exponents λ1 and λ2 and an infinitely differentiable perturbation infinitesimal of order m >1 in a neighborhood of the origin and possibly growing outside the neighborhood such that the nontrivial solutions of the perturbed system are infinitely extendible and the characteristic exponents of solutions issuing from any neighborhood of the origin form exactly the set β. In addition, we generalize this infinite version of the Perron effect in a neighborhood of the origin to other points of the plane of initial values of solutions. Original Russian Text © N.A. Izobov, A.V. Il’in, 2015, published in Differentsial’nye Uravneniya, 2015, Vol. 51, No. 11, pp. 1420–1432. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть