Prediction of Transport Properties of New Functional Materials Based on Lanthanum-Strontium Cuprates: Molecular Mechanics Calculationsстатья
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 июля 2013 г.
Аннотация:The method of molecular dynamics is used for prediction of properties of new functional materials based on lanthanum-strontium cuprates La(2-x)Sr(x)CuO(4-d) as new materials of the solid state ionics. The most interesting phases are synthesized to test the obtained calculation data and their electrophysical and thermomechanical characteristics are studied. It is shown that the high values of the oxygen diffusion coefficients are obtained in the La(2-x)Sr(x)CuO(4-d) solid solutions with a high replacement degree of Sr --> La (up to x = 1). The calculated values of lattice cell parameters, thermal expansion coefficients and oxygen diffusion coefficients agree with the experimental data. The observed anisotropy of anionic transport for all the studied compositions corresponds to the regularities of crystal structure of complex oxides. Using the molecular dynamics method allows tracing the contribution of separate types of oxygen ions (equatorial and apical) into ionic transport at the microscopic level and also confirming directly that oxygen diffusion occurs according to the usual jump mechanism, mainly in (CuO(2)) layers.