Средоулучшающие фитотехнологии: Micranthemum umbrosum и другие водные макрофиты как фактор снижения содержания в воде тяжелых металловстатья

Статья опубликована в журнале из списка RSCI Web of Science
Статья опубликована в журнале из перечня ВАК

Работа с статьей


[1] Средоулучшающие фитотехнологии: Micranthemum umbrosum и другие водные макрофиты как фактор снижения содержания в воде тяжелых металлов / С. А. Остроумов, В. А. Поклонов, С. В. Котелевцев и др. // Технологии живых систем. — 2013. — Т. 10, № 1. — С. 53–57. Остроумов С.А., Поклонов В.А., Котелевцев С.В., Шестакова Т.В., Демина Л.Л., Шелейковский В.Л. Средоулучшающие фитотехнологии: Micranthemum umbrosum и другие водные макрофиты как фактор снижения содержания в воде тяжелых металлов // Технологии живых систем. 2013. Т. 10. № 1. С. 53-57. ISSN 2070-0997. Авторы статьи выявили фиторемедиационный потенциал ранее не исследованных видов водных макрофитов Ludwigia repens J.R. Forst., Micranthemum micranthemoides (Nutt.) Wettst., и Micranthemum umbrosum (J.F. Gmel.) S.F. Blake при воздействии на них смеси тяжелых металлов (Pb=0,2 мг/л, Zn=3 мг/л, Cu=3 мг/л, Cd=0,1 мг/л). Концентрации измеряли методом инверсионной вольтамперометрии. Опыты авторов доказали, что в присутствии водных растений ускорялось снижение концентрации всех четырех металлов по сравнению с контролем (водные системы без растений). Авторы обнаружили фитотоксичность исследованной смеси тяжелых металлов для макрофитов Micranthemum micranthemoides, и M. umbrosum . ** Cайт журнала: http://www.radiotec.ru/catalog.php?cat=jr14 ** Ostroumov S.A., Poklonov V.A., Kotelevtsev S.V., Shestakova, T.V., Demina, L.L., Sheleykovsky V. L. Phytotechnology to improve the environment: Micranthemum umbrosum and other aquatic macrophytes as a factor in decreasing the concentrations of heavy metals in water. Technologies of Living Systems. 2013. V. 10. No. 1. p. 53-57. ISSN 2070-0997. ASTRACT ( in short). The authors discovered the phytoremediation potential of previously unstudied species of aquatic macrophytes, namely, Ludwigia repens JR Forst., Micranthemum micranthemoides (Nutt.) Wettst., And Micranthemum umbrosum (JF Gmel.) SF Blake. The plants were exposed to a mixture of heavy metals (Pb = 0,2 mg / L, Zn = 3 mg / L, Cu = 3 mg / L, Cd = 0,1 mg / L). Experiments of the authors showed that in the presence of the aquatic plants, an accelerated decrease in the concentrations of all four metals as compared to control (water systems without plants) took place. The authors found phytotoxicity of the studied mixture of the heavy metals to macrophytes Micranthemum micranthemoides, and M. umbrosum. ** ** Ostroumov S.A., Poklonov V.A., Kotelevtsev S.V., Shestakova, T.V., Demina, L.L., Sheleykovsky V. L. Phytotechnology to improve the environment: Micranthemum umbrosum and other aquatic macrophytes as a factor in decreasing the concentrations of heavy metals in water. Technologies of Living Systems. 2013. V. 10. No. 1. p. 53-57. ISSN 2070-0997. ASTRACT (a larger version): The authors discovered the phytoremediation potential of the three previously unstudied species of aquatic macrophytes, namely, Ludwigia repens JR Forst., Micranthemum micranthemoides (Nutt.) Wettst., and Micranthemum umbrosum (JF Gmel.) SF Blake. The plants were exposed to a mixture of heavy metals (Pb = 0,2 mg / L, Zn = 3 mg / L, Cu = 3 mg / L, Cd = 0,1 mg / L). Experiments of the authors showed that in the presence of the aquatic plants, an accelerated decrease in the concentrations of all four metals as compared to control (water systems without plants) took place. The concentrations of Pb, Zn, Cu, Cd were measured using the method of inversion volt-amperometry. For instance, in case of copper (Cu), after the 2-day incubation, the average concentration of this metal in the aquatic medium of the systems with the macrophyte L. repens was only 3,7 % of the control value. In the systems with another species, M. micranthemoides, the average concentration of copper was only 12,3% of that in the control, in the systems with M. umbrosum, the average concentration of copper was 22,1% of the control. Among the three species of plants, the most efficient in removing copper was L. repens. In case of zink (Zn), the degree of removal of the metal from the aquatic medium varied greatly depending on the species of the plant. In the water of the systems with L. repens, the average concentration of zink was 90,5% of the control value. In the water of the systems with M. micranthemoides, the average level of Zn was 18,4% of that in the control. In the microcosms with M. umbrosum, the average concentration of zink in the aquatic medium was 64,6% of the control. Among the three species, the most effective in decreasing the level of zink in the water was M. micranthemoides. As for Pb, all of the tree species of plants contributed to efficient removal of this metal from the aquatic medium. After the incubation, the average concentration of Pb in the microcosms with L. repens was only 8,2 % of the control value. In the system with M. micranthemoides, the average concentration of Pb was 11,8% of that in the control. In the microcosms with M. umbrosum, the average level of this metal was 8,8% of the control. All three species of plants decreased the concentration of Pb in the aquatic medium by an order of magnitude. When the concentration of cadmium (Cd) was measured, the decrease in the concentration was as following. In the aquatic medium of the microcosms with L. repens, the average concentration of Cd was 25.3 % of the control value. In the systems with M. micranthemoides, the average level of the metal was 14,2% of that in the control. In the microcosms with M. umbrosum, the average concentration of cadmium was the least of all the three plant species, only 10,0% of the control. Among the three species of plants, this species, M. umbrosum , was most efficient in removing cadmium. The authors found phytotoxicity of the studied mixture of the heavy metals to the macrophytes Micranthemum micranthemoides, and M. umbrosum. The new data contributed to establish a data base for developing new ecotechnology to improve water quality. Moreover, the new facts provided additional support to the theory of the biota-dependent water self-purification that was developed by one of the co-authors in his previous publications (Ostroumov, 2004, 2008). ** ** REFERENCES: 1. Добровольский Г.В. К 80-летию выхода в свет книги В.И. Вернадского “Биосфера”. Развитие некоторых важных разделов учения о биосфере. - Экологическая химия. 2007, т. 16(3), с.135–143. 2. Остроумов С.А., Поклонов В.А., Шелейковский В.Л., Шестакова Т.В., Котелевцев С.В., Козлов Ю.П. Фиторемедиационный потенциал пяти видов макрофитов (Utricularia gibba и другие) в условиях микрокосмов и внесения в воду смеси тяжелых металлов (Zn, Cu, Pb, Cd) // Ecological Studies, Hazards, Solutions, 2010, том 15, с. 91-94. 3.Остроумов С.А., Шестакова Т.В., Котелевцев С.В., Соломонова Е.А., Головня Е.Г., Поклонов В.А. Присутствие макрофитов в водной системе ускоряет снижение концентраций меди, свинца и других тяжелых металлов в воде // Водное хозяйство России. 2009. No. 2. С. 58-67. 4.Остроумов С.А., Шестакова Т.В., Котелевцев С.В., Колотилова Н.Н., Поклонов В.А., Соломонова Е.А. Новое о фиторемедиационном потенциале: ускорение снижения концентраций тяжелых металлов (Zn, Cu, Pb, Cd) в воде в присутствии элодеи // Экологическая химия. 2009, 18(2): с.111-119. 5. Остроумов С.А., Соломонова Е.А. Изучение диапазона устойчивости макрофита Potamogeton crispus L. в условиях микрокосмов, содержащих додецилсульфат натрия // Технология живых систем. 2010, № 2. 6. Rand G. Fundamentals of Aquatic Toxicology. Phyladelphia: Taylor&Francis. 1995. 1126 p. 7. Моисеенко Т.И., Кудрявцева Л.П., Гашкина Н.А. Рассеянные элементы в поверхностных водах суши : технофильность, биоаккумуляция и экотоксикология. М.: Наука, 2006. – 261 с. 8. Алимов А.Ф. 2000. Элементы теории функционирования водных экосистем. СПб.: Наука, 147 с. 9. Остроумов С.А. Гидробионты в самоочищении вод и биогенной миграции элементов. М.: МАКС. Пресс 2008. 200 с. 10. Ермаков В.В. О книге С.А.Остроумова Гидробионты в самоочищении вод и биогенной миграции элементов // Вода: химия и экология. 2009. № 8. С. 25-29. 11. Остроумов С.А. О биотическом самоочищении водных экосистем. Элементы теории // ДАН. 2004, Т. 396. С. 136-141. 12. Кокин К.А. Экология высших водных растений. М.: Издательство Московского университета. 160 с. 13. Остроумов С.А., Соломонова Е.А. Метод определения допустимых нагрузок загрязняющих веществ на высшие водные растения и перспективы его применения. Экология промышленного производства. 2012. №2. С. 54-60. 14. Шелейковский В.Л., С.В. Котелевцев, С.А. Остроумов, Т.В. Шестакова, В.А. Поклонов. Взаимодействия кадмия и других тяжелых металлов с водными макрофитами Ludwigia repens, Micranthemum micranthemoides и Micranthemum umbrosum // Проблемы биогеохимии и геохимической экологии. 2011, №3 (17), с.149-152. 15. Поклонов В.А., Котелевцев С.А., Шестакова Т.В., Шелейковский В.Л., Остроумов С.А. Изучение фиторемедиационного потенциала водных растений Lilaeopsis brasiliensis и Utricularia gibba // Вода: химия и экология, 2012, № 5, С. 66-69. 16. Остроумов С.А., Шестакова Т.В. Снижение измеряемых концентраций Cu, Zn, Cd, Pb в воде экспериментальных систем с Ceratophyllum demersum: потенциал фиторемедиации // ДАН. 2009. т.428. № 2. С. 282-285. 17. Ostroumov S.A., Shestakova T.V. Decreasing the measurable concentrations of Cu, Zn, Cd, and Pb in the water of the experimental systems containing Ceratophyllum demersum: The phytoremediation potential // Doklady Biological Sciences, 2009, vol. 428, № 1, p. 444-447. 18. Остроумов С.А., Котелевцев С.В., Шестакова Т.В., Поклонов В.А., Соломонова Е.А., Головня Е.Г. Водные макрофиты способствуют снижению измеряемой концентрации кадмия и других металлов в воде. - Ecological Studies, Hazards, Solutions, 2009, vol.14. - Ecological Studies, Hazards, Solutions, 2009, vol.14. p. 67. 19. Остроумов, С.А., Поклонов, В. А., Шелейковский, В.Л., Шестакова, Т.В., Котелевцев, С.В., Козлов, Ю.П., Методические вопросы и оценка фитотоксичности смеси тяжелых металлов (Zn, Cu, Pb, Cd ) для пяти видов макрофитов (Utricularia gibba и другие) в условиях микрокосмов // Ecological Studies, Hazards, Solutions, 2010, Т.15, С.87-91. 20. Solomonova E.A., Ostroumov S.A. Tolerance of an aquatic macrophyte Potamogeton crispus L. to sodium dodecyl sulphate. - Moscow University Biological Sciences Bulletin. 2007. Volume 62, Number 4. P.176-179. 21. Соломонова Е.А., Остроумов С.А. Изучение устойчивости водного макрофита Potamogeton crispus L. к додецилсульфату натрия. - Вестник Московского ун-та. Сер. 16. Биология. 2007. № 4. С.39-42.

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть