Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigenстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 21 сентября 2017 г.
Аннотация:We have demonstrated label-free and real-time detection of prostate specific antigen (PSA) in human serum using silicon nanowire field effect transistors (NW FETs) with Schottky contacts (Si-Ti). The NW FETs were fabricated from SOI material using high-resolution e-beam lithography, thin film vacuum deposition and reactive-ion etching processes eliminating complicated processes of doping and thermal annealing. This allowed substantial simplifying the transistors manufacturing. A new method for covalent immobilization of half-fragments of antibodies on silicon modified by 3-glycidopropyltrimethoxysilane with thiol groups and 5 nm gold nanoparticles (GNPs) was established. NW FETs functionalized by GNPs revealed extremely high pH sensitivity of 70 mV/pH and enhanced electrical performance in the detection of antigen due to enhanced surface/volume ratio, favorable orientation of antibody active sites and approaching the source of the electric field close to the transistor surface. Si NWFETs were applied for quantitative detection of PSA in a buffer and human serum diluted 1/100. Response time was about 5–10 s, and analysis time per sample was 1 min. The limit of PSA detection was of 23 fg/mL, concentration range of 23 fg/mL–500 ng/mL (7 orders of magnitude). The PSA concentrations determined by the NW FETs in serum were compared with well-established ELISA method. The results matched well with the correlation coefficient of 0.97.