О некоторых свойствах многочленов над конечным полемстатья

Статья опубликована в журнале из списка RSCI Web of Science
Статья опубликована в журнале из перечня ВАК
Дата последнего поиска статьи во внешних источниках: 28 мая 2015 г.

Работа с статьей


[1] Селезнева С. Н. О некоторых свойствах многочленов над конечным полем // Дискретная математика. — 2001. — Т. 13, № 2. — С. 111–119. Рассматриваются многочлены над конечным полем. Многочлены от одной переменной называются преобразованиями. Изучаются многочлены от многих переменных, которые не изменяются при замещении каждой их переменной некоторым ее преобразованием. Такие многочлены называются инвариантными относительно преобразований переменных. Изучается строение многочленов, инвариантных относительно связных преобразований. Преобразование называется связным, если для любой пары элементов поля один из них переводится в другой кратным применением этого преобразования. С каждым многочленом связан ряд целочисленных характеристик. В работе рассматриваются целочисленные характеристики, называемые рангом и весом многочлена от многих переменных. Доказано следующее свойство многочленов, инвариантных относительно связных преобразований: если r и w — соответственно ранг и вес многочлена, инвариантного относительно связных преобразований, то w^q ≥ 2^r, где q — зависящая от преобразований постоянная, не большая числа элементов поля. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть