On the Keller-Blank solution to the scattering problem of pulses by wedgesстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 1 октября 2016 г.

Работа с статьей


[1] On the keller-blank solution to the scattering problem of pulses by wedges / A. Komech, A. E. Merzon, J. E. De la Paz Mendez, T. J. Villalba Vega // Mathematical Methods in the Applied Sciences. — 2015. — Vol. 38, no. 10. — P. 2035–2040. We prove that the solution of the scattering problem of pulses constructed by Keller and Blank in 1951 coincides with the solution obtained by the method of complex characteristics. The method was developed by Komech and Merzon in 2006-2007. Its main advantage is that it provides the existence and uniqueness of solutions in suitable functional classes, and the limiting amplitude principle. On the other hand, the uniqueness in the Keller-Blank approach was not studied before. Our result means that the Keller-Blank solution belongs to our functional classes. We prove the coincidence for DD and NN-boundary conditions. Moreover, we obtain the solution for the DN-case. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть