Singularities and spectral asymptotics of a random nonlinearwave in a nondispersive systemстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 22 апреля 2020 г.

Работа с статьей


[1] Gurbatov S. N., Rudenko O. V., Tyurina F. V. Singularities and spectral asymptotics of a random nonlinearwave in a nondispersive system // Wave Motion. — 2020. — Vol. 95, no. 102519. — P. 1–15. In this paper, we study the propagation of high-intensity acoustic noise in free space and in waveguide systems. A mathematical model generalizing the Burgers equation is used. It describes the nonlinear wave evolution inside tubes of variable cross-section, as well as in ray tubes, if the geometric approximation for heterogeneous media is used. The generalized equation transforms to the common Burgers equation with a dissipative parameter, known as the ‘‘Reynolds–Goldberg number’’. In our model, this number depends on the distance travelled by the wave. With a zero ‘‘viscous’’ dissipative term, the model reduces to the Riemann (or Hopf) equation. Its solution presents the field by an implicit function. The spectral form of this solution makes it possible to derive explicit expressions for both dynamic and statistical characteristics of intense waves. The use of a spectral approach allowed us to describe the high-intensity noise in media with zero and finite viscosity. Applicability conditions of these solutions are defined. Since the phase matching is fulfilled for any triplet of interacting spectral components, there is an avalanche-like increase in the number of harmonics and the formation of shocks. The relationship between these discontinuities and other singularities and the high- frequency asymptotic of intense noise is studied. The possibility is shown to enhance nonlinear effects in waveguide systems during the evolution of noise. © 2020Published by Elsevier. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть