Plane Kolmogorov flows and Takens-Bogdanov bifurcation without parameters: The doubly reversible caseстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 26 сентября 2016 г.

Работа с статьей


[1] Afendikov A., Fiedler B., Liebscher S. Plane kolmogorov flows and takens-bogdanov bifurcation without parameters: The doubly reversible case // Asymptotic Analysis. — 2008. — Vol. 60, no. 3-4. — P. 185–211. Abstract: We consider the Kolmogorov problem of viscous incompressible planar fluid flow under external spatially periodic forcing. Looking for time-independent bounded solutions near the critical Reynolds number, we use the Kirchgässner reduction to obtain a spatial dynamical system on a 6-dimensional center manifold. The dynamics is generated by translations in the unbounded spatial direction. Reduction by first integrals yields a 3-dimensional reversible system with a line of equilibria. This line of equilibria is neither induced by symmetries, nor by first integrals. At isolated points, normal hyperbolicity of the line fails due to a transverse double eigenvalue zero. In particular we describe the complete set ℬ of all small bounded solutions. In the classical Kolmogorov case, ℬ consists of periodic profiles, homoclinic pulses and a heteroclinic front–back pair. This is a consequence of the symmetry of the external force. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть