Propagation and absorption of high-intensity femtosecond laser radiation in diamondстатья
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 5 сентября 2016 г.
Аннотация:Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 1011 to 1014 W cm(-2). The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti:sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at lambda = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultra-short pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond.