Аннотация:Let $x(t)$ be a Gaussian stationary process $\mathfrak{M}_{ + 0} = \bigcap _{t > 0} \mathfrak{M}_t $, where $\mathfrak{M}_t $ is the $\sigma $-algebra generated by $x(s),0 \leqq s \leqq t$. It is proved that if the spectral density $f(\lambda ) $ of the process satisfies the condition $f(\lambda ) \geqq {1}/{\lambda ^p} $ for all $| \lambda | > \lambda _0 $ and some $p > 0$, the $\sigma $-algebra $\mathfrak{M}_{ + 0} $ is generated by $x(0),{dx(0)}/{dt}, \cdots ,{dx^{(k)}{(0)}}/{dt^k}$, where k is the order of the derivative the sample functions admit.