Формулы Фейнмана и закон больших чисел для случайных однопараметрических полугруппстатья

Статья опубликована в журнале из списка RSCI Web of Science
Статья опубликована в журнале из перечня ВАК
Дата последнего поиска статьи во внешних источниках: 1 апреля 2020 г.

Работа с статьей


[1] Орлов Ю. Н., Сакбаев В. Ж., Смолянов О. Г. Формулы Фейнмана и закон больших чисел для случайных однопараметрических полугрупп // Труды Математического института им.В.А.Стеклова РАН. — 2019. — Т. 306. — С. 210–226. Исследуются последовательности композиций независимых одинаково распределенных случайных однопараметрических полугрупп линейных преобразований гильбертова пространства и асимптотические свойства распределений таких композиций при стремлении их числа к бесконечности. Для изучения математического ожидания таких композиций применяются итерации Фейнмана–Чернова, получаемые с помощью теоремы Чернова. При этом формулой Фейнмана называется представление однопараметрической полугруппы или связанных с ней объектов с помощью предела интегралов по декартовым степеням подходящего пространства, а также некоторые обобщения таких представлений; итерациями Фейнмана–Чернова называются допредельные выражения из формул Фейнмана. В частности, изучается отклонение значений композиций независимых случайных полугрупп от их математического ожидания и исследуется выполнение для таких композиций аналогов предельных теорем теории вероятностей типа закона больших чисел. Получены достаточные условия того, что любая окрестность математического ожидания композиции n случайных полугрупп содержит (случайное) значение этой композиции с вероятностью, стремящейся к единице при n→∞ (это свойство и считается законом больших чисел для композиций). Приведены примеры последовательностей независимых случайных полугрупп, для композиции которых закон больших чисел не выполнен. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть