An introduction to geophysical distributionsстатья

Статья опубликована в журнале из списка RSCI Web of Science
Статья опубликована в журнале из перечня ВАК
Статья опубликована в журнале из списка Web of Science и/или Scopus
• Авторы:
• Журнал: Russian Journal of Earth Sciences
• Том: 19
• Номер: ES6010
• Год издания: 2019
• DOI: 10.2205/2019ES000697
• Аннотация: This paper reviews the methods of treating the results of geophysical observations typically met in various geophysical studies. The main emphasize is given to the sets of data on the phenomena undergone the actions of random factors. These data are normally described by the distributions depending on the nature of the processes. Among them the magnitude of earthquakes, the diameters of moon craters, the intensity of solar flares, population of cities, size of aerosol and hydrosol particles, eddies in turbulent water, the strengths of tornadoes and hurricanes and many other things. Irrespective of the causes for their randomness these manifestations of planetary activity are characterized by few distribution functions like Gauss distribution, lognormal distribution, gamma distribution, and algebraic distributions. Each of these distributions contains empirical parameters the values of which depend on the concrete nature of the process. Especially interesting are so called “thick” distributions with the algebraic tails. Possible parametrizations of these distributions are discussed.
• Добавил в систему: Богоутдинов Шамиль Рафекович

Работа с статьей

 [1] Lushnikov A. A., Bogoutdinov S. R. An introduction to geophysical distributions // Russian Journal of Earth Sciences. — 2019. — Vol. 19, no. ES6010. This paper reviews the methods of treating the results of geophysical observations typically met in various geophysical studies. The main emphasize is given to the sets of data on the phenomena undergone the actions of random factors. These data are normally described by the distributions depending on the nature of the processes. Among them the magnitude of earthquakes, the diameters of moon craters, the intensity of solar flares, population of cities, size of aerosol and hydrosol particles, eddies in turbulent water, the strengths of tornadoes and hurricanes and many other things. Irrespective of the causes for their randomness these manifestations of planetary activity are characterized by few distribution functions like Gauss distribution, lognormal distribution, gamma distribution, and algebraic distributions. Each of these distributions contains empirical parameters the values of which depend on the concrete nature of the process. Especially interesting are so called “thick” distributions with the algebraic tails. Possible parametrizations of these distributions are discussed. [ DOI ]