Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 28 октября 2016 г.
Аннотация:We study finite automata representations of numerical rings. Such representations correspond to the class of linear p-adic automata that compute homogeneous linear functions with rational coefficients in the ring of p-adic integers. Finite automata act both as ring elements and as operations. We also study properties of transition diagrams of automata that compute a function f(x)= cx of one variable. In particular we obtain precise values for the number of states of such automata and show that for c > 0 transition diagrams are self-dual (this property generalises self-duality of Boolean functions). We also obtain the criterion for an automaton computing a function f(x)= cx to be a permutation automaton, and fully describe groups that are transition semigroups of such automata.