Algebraic bright and vortex solitons in defocusing mediaстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 20 ноября 2019 г.
Аннотация:We demonstrate that spatially inhomogeneous defocusing nonlinear landscapes with the nonlinearity coefficient growing toward the periphery as (1+|𝑟|𝛼) support one- and two-dimensional fundamental and higher-order bright solitons, as well as vortex solitons, with algebraically decaying tails. The energy flow of the solitons converges as long as nonlinearity growth rate exceeds the dimensionality, i.e., 𝛼>𝐷. Fundamental solitons are always stable, while multipoles and vortices are stable if the nonlinearity growth rate is large enough.