Fractional dynamics of coupled oscillators with long-range interactionстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 июля 2013 г.
Аннотация:We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1/parallel to n-m parallel to(alpha+1). It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order alpha, when 0 <alpha < 2. We consider a few models of coupled oscillators and show how their synchronization can appear as a result of bifurcation, and how the corresponding solutions depend on alpha. The presence of a fractional derivative also leads to the occurrence of localized structures. Particular solutions for fractional time-dependent complex Ginzburg-Landau (or nonlinear Schrodinger) equation are derived. These solutions are interpreted as synchronized states and localized structures of the oscillatory medium.