Fractional equations of kicked systems and discrete mapsстатья
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 июля 2013 г.
Аннотация:Starting from kicked equations of motionwith derivatives of non-integer orders, we obtain ‘fractional’ discrete maps. These maps are generalizations of wellknown universal, standard, dissipative, kicked damped rotator maps. The main property of the suggested fractional maps is a long-term memory. The memory effects in the fractional discrete maps mean that their present state evolution depends on all past states with special forms of weights. These forms are represented by combinations of power-law functions.