On periodic motions of a rigid body suspended on a thread in a uniform gravity fieldстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Дата последнего поиска статьи во внешних источниках: 4 сентября 2019 г.

Работа с статьей

Прикрепленные файлы


Имя Описание Имя файла Размер Добавлен
1. Полный текст Vestnik_UDGU_19-02-08.pdf 228,8 КБ 2 сентября 2019 [anat-markeev@mail.ru]

[1] Markeev A. P. On periodic motions of a rigid body suspended on a thread in a uniform gravity field // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki. — 2019. — Vol. 29, no. 2. — P. 245–260. The planar motion of a rigid body in a uniform gravity field is considered. The body is suspended on a weightless inextensible thread. The thread is assumed to remain taut during the motion of the body. Nonlinear periodic oscillations of the body in the vicinity of its stable equilibrium position on the vertical are studied. These motions are generated by small (linear) normal body vibrations. The question of the existence of such motions is solved with the Lyapunov theorem on a holomorphic integral. An algorithm for constructing these motions using the canonical transformation method is proposed. The corresponding solutions are represented in the form of series in a small parameter characterizing the amplitude of the generating normal oscillations. A rigorous solution is given to the nonlinear problem of orbital stability of the motions obtained. Possible regions of parametric resonance (instability regions) are indicated. The third and fourth order resonance cases, as well as a nonresonant case, are considered. The study is based on the Lyapunov and Poincar´e methods and KAM-theory. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть