Probability characteristics of nonlinear dynamical systems driven by δ-pulse noiseстатья

Статья опубликована в высокорейтинговом журнале

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 26 сентября 2016 г.

Работа с статьей


[1] Dubkov A. A., Rudenko O. V., Gurbatov S. N. Probability characteristics of nonlinear dynamical systems driven by δ-pulse noise // Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. — 2016. — Vol. 93, no. 062125. — P. 062125–1– 062125–7. For a nonlinear dynamical system described by the first-order differential equation with Poisson white noise having exponentially distributed amplitudes of δ pulses, some exact results for the stationary probability density function are derived from the Kolmogorov-Feller equation using the inverse differential operator.Specifically,we examine the “effect of normalization” of non-Gaussian noise by a linear system and the steady-state probability density function of particle velocity in the medium with Coulomb friction. Next, the general formulas for the probability distribution of the system perturbed by a non-Poisson δ-pulse train are derived using an analysis of system trajectories between stimuli. As an example, overdamped particle motion in the bistable quadratic-cubic potential under the action of the periodic δ-pulse train is analyzed in detail. The probability density function and the mean value of the particle position together with average characteristics of the first switching time from one stable state to another are found in the framework of the fast relaxation approximation. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть