Infinite lattice models by an expansion with a non-Gaussian initial approximationстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 сентября 2019 г.
Аннотация:Recently, a convergent series employing a non-Gaussian initial approximation was constructed and shown to be an effective computational tool for the finite size lattice models with a polynomial interaction. Here we show that the Borel summability is a sufficient condition for the correctness of the coinfinitenvergent series applied to infinite lattice models. We test the numerical workability of the convergent series method by examining one- and two-dimensional $\phi^4$ lattice models. The comparison of the convergent series computations and the infinite lattice extrapolations of the Monte Carlo simulations reveals an agreement between two approaches.