Exploring the plasma chemistry in microwave chemical vapor deposition of diamond from c/h/o gas mixturesстатья

Статья опубликована в высокорейтинговом журнале

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 июля 2013 г.

Работа с статьей


[1] Exploring the plasma chemistry in microwave chemical vapor deposition of diamond from c/h/o gas mixtures / M. W. Kelly, J. C. Richley, C. M. Western et al. // The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. — 2012. — Vol. 116, no. 38. — P. 9431–46. Microwave (MW)-activated CH(4)/CO(2)/H(2) gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X(C/Sigma) = X(elem)(C)/(X(elem)(C) + X(elem)(O)) 0.5, H(2) mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C(2)(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H(2) are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H(2)-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH(4)/CO(2)/H(2) plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH(4)/H(2) plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X(C/Sigma) < 0.5) to carbon-rich (X(C/Sigma) > 0.5) source gas mixtures and, by comparing CH(4)/CO(2)/H(2) (X(C/Sigma) = 0.5) and CO/H(2) plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH(3) radicals are identified as the most abundant C(1)H(x) [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X(C/Sigma) 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater.1991, 1, 1). This, and the findings of similar maximal gas temperatures (T(gas) 2800-3000 K) and H atom mole fractions (X(H)5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH(3) radical based diamond growth mechanisms in both C/H and C/H/O plasmas. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть