Polynomial authomorphisms, Jacobian, Dixmier and Kontzevich conjecturesтезисы доклада

Дата последнего поиска статьи во внешних источниках: 1 августа 2016 г.

Работа с тезисами доклада


[1] Kanel-Belov A. Polynomial authomorphisms, jacobian, dixmier and kontzevich conjectures // Jerusalem Algebra Seminar. Thursday, February 24 2005, at 12:15 (room 209). — HUJI, 2005. — P. . Our first meeting this semester will be held this Thursday, February 24 2005, at 12:15 (room 209). Dr. A. Kanel-Belov (HU) will give a talk entitled: Polynomial authomorphisms, Jacobian, Dixmier and Kontzevich conjectures. Abstract: The talk is devoted to the famous Jacobian conjecture: JC_n: Has any polynomial mapping of $Cn to Cn$ with constant Jacobian a polynomial inverse? Diximer conjecture (DC_n): End(W_n)=Aut(W_n), where $W_n=C[x_1,dots,x_n,partial x_1,dots,partial x_n]$. It was well known that $DC_n$ implies $JC_n$. Recently, together with Kontzevich, the author proved that $JC_{2n}$ implies $DC_n$. This is related to Kontzevich conjecture, saying that $Aut(W_n)$ is isomorphic to the group of polynomial symplectomorphisms of $C{2n}$. These questions are related to describing aut(aut(W_n)). Recently author proved that the group of algebraic Aut(Aut(Cn)) contains only inner automorphisms. All welcome!

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть