Piecewise-smooth refinable functionsстатья

Информация о цитировании статьи получена из Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 29 мая 2015 г.

Работа с статьей


[1] Protasov V. Y. Piecewise-smooth refinable functions // St. Petersburg Mathematical Journal. — 2005. — Vol. 16, no. 5. — P. 821–835. Univariate piecewise-smooth refinable functions (i.e., compactly supported solutions of the equation f(x/2) = ∑_{k=1}^N c_k f(x-k)) are classified completely. Characterization of the structure of refinable splines leads to a simple convergence criterion for the subdivision schemes corresponding to such splines, and to explicit computation of the rate of convergence. This makes it possible to prove a factorization theorem about decomposition of any smooth refinable function (not necessarily stable or corresponding to a convergent subdivision scheme) into a convolution of a continuous refinable function and a refinable spline of the corresponding order. These results are applied to a problem of combinatorial number theory (the asymptotics of Euler's partition function). The results of the paper generalize several previously known statements about refinement equations and help to solve two open problems. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть