 ## Numerical Simulation of Conjugate Heat Transfer in Non-regular Mode of Cooling High-Temperature Metal Cylinder by Gas–Liquid Medium in Circular ChannelстатьяИсследовательская статья Информация о цитировании статьи получена из Scopus
Дата последнего поиска статьи во внешних источниках: 25 апреля 2019 г.
• Авторы:
• Сборник: ICIE 2018: Proceedings of the 4th International Conference on Industrial Engineering
• Серия: Lecture Notes in Mechanical Engineering
• Год издания: 2019
• Место издания: Springer
• Первая страница: 319
• Последняя страница: 329
• DOI: 10.1007/978-3-319-95630-5_35
• Аннотация: The results of the numerical modeling are presented for conjugate heat transfer in the non-regular mode of cooling a high-temperature metal cylinder by a gas-liquid medium in a horizontal circular channel. The results have been obtained on the basis of the two-dimensional mathematical model of the conjugate heat transfer of an unsteady gas-liquid flow and a metal cylinder taking into account the cooling medium flow symmetry relative to the cylinder longitudinal axis. The differential equation system is solved by the control volume approach. The flow field parameters are calculated with the use of an algorithm SIMPLE. The Gauss-Seidel method with under-relaxation is used for the iterative solution of the linear algebraic equations. The calculations are performed with the help of the mesh with a convergent profile on the boundaries ‘metal cylinder-liquid’ and ‘liquid – outer metal ring’ for the liquid and metal. The system of heat-mass-transfer balance at the evaporation is controlled on the basis of the energy model of heat balance. The calculation results have been obtained for the heat transfer parameters at cooling the high-temperature metal cylinder with the laminar gas-liquid flow with consideration of evaporation in the liquid. The intensity of the variation of the conjugated substances temperature, the gas-liquid flow velocity, the vapor volume concentration in the liquid flow, the specific mass velocity of evaporation in the liquid depending on the cooling time are analyzed.
• Добавил в систему: Макаров Сергей Сергеевич

### Работа с статьей

  Makarov S. S., Dementiev V. B. Numerical simulation of conjugate heat transfer in non-regular mode of cooling high-temperature metal cylinder by gas–liquid medium in circular channel // ICIE 2018: Proceedings of the 4th International Conference on Industrial Engineering. — Lecture Notes in Mechanical Engineering. — Springer, 2019. — P. 319–329. The results of the numerical modeling are presented for conjugate heat transfer in the non-regular mode of cooling a high-temperature metal cylinder by a gas-liquid medium in a horizontal circular channel. The results have been obtained on the basis of the two-dimensional mathematical model of the conjugate heat transfer of an unsteady gas-liquid flow and a metal cylinder taking into account the cooling medium flow symmetry relative to the cylinder longitudinal axis. The differential equation system is solved by the control volume approach. The flow field parameters are calculated with the use of an algorithm SIMPLE. The Gauss-Seidel method with under-relaxation is used for the iterative solution of the linear algebraic equations. The calculations are performed with the help of the mesh with a convergent profile on the boundaries ‘metal cylinder-liquid’ and ‘liquid – outer metal ring’ for the liquid and metal. The system of heat-mass-transfer balance at the evaporation is controlled on the basis of the energy model of heat balance. The calculation results have been obtained for the heat transfer parameters at cooling the high-temperature metal cylinder with the laminar gas-liquid flow with consideration of evaporation in the liquid. The intensity of the variation of the conjugated substances temperature, the gas-liquid flow velocity, the vapor volume concentration in the liquid flow, the specific mass velocity of evaporation in the liquid depending on the cooling time are analyzed. [ DOI ]