Problems of Hydrodynamics for a Triaxial Ellipsoidстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из перечня ВАК
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 6 декабря 2018 г.

Работа с статьей

Прикрепленные файлы


Имя Описание Имя файла Размер Добавлен
1. petrov2018_4.pdf petrov2018_4.pdf 211,7 КБ 23 января 2019 [E1L2E3N4A5]

[1] Petrov A. G. Problems of hydrodynamics for a triaxial ellipsoid // Journal of Applied Mechanics and Technical Physics. — 2018. — Vol. 59, no. 4. — P. 618–630. Problems of motion of a triaxial ellipsoid in an ideal liquid and in a viscous liquid in the Stokes approximation and also equilibrium shapes of the rotating gravitating liquid mass are considered. Solutions of these problems expressed via four quadratures depending on four parameters are significantly simplified because they are expressed via the only function of two arguments. The efficiency of the proposed approach is demonstrated by means of analyzing the velocity and pressure fields in an ideal liquid, calculating the added mass of the ellipsoid, determining the viscous friction, and studying the equilibrium shapes and stability of the rotating gravitating capillary liquid. The pressure on the triaxial ellipsoid surface is expressed via the projection of the normal to the impinging flow velocity. The shape of an ellipsoid that ensures the minimum viscous drag at a constant volume is determined analytically. A simple equation in elementary functions is derived for determining the boundary of the domains of the secular stability of the Maclaurin ellipsoids. An approximate solution of the problem of equilibrium and stability of a rotating droplet is presented in elementary functions. A bifurcation point with non-axisymmetric equilibrium shapes branching from this point is found. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть