## A Method of Calculating Principal Stress Trajectories in Powder and Porous Materials Obeying a Piece-wise Linear Yield Criterionстатья

Информация о цитировании статьи получена из Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 6 марта 2019 г.
• Авторы:
• Журнал: MATEC Web of Conferences
• Том: 220
• Год издания: 2018
• Первая страница: 01002
• DOI: 10.1051/matecconf/201822001002
• Аннотация: The present paper deals with the system of equations comprising the pyramid yield criterion together with the stress equilibrium equations under plane strain conditions. The stress equilibrium equations are written relative to a coordinate system in which the coordinate curves coincide with the trajectories of the principal stress directions. The general solution of the system is found giving a relation connecting the two scale factors for the coordinate curves. This relation is used for developing a method for finding the mapping between the principal lines and Cartesian coordinates with the use of a solution of a hyperbolic system of equations. In particular, the mapping between the principal lines and Cartesian coordinates is given in parametric form with the characteristic coordinates as parameters.
• Добавил в систему: Александров Сергей Евгеньевич

### Работа с статьей

#### Прикрепленные файлы

Имя Описание Имя файла Размер Добавлен
1. Полный текст matecconf_icmsc2018_01002.pdf 134,9 КБ 14 ноября 2018 [AlexandrovS]

 [1] Alexandrov S., Lyamina E., Date P. A method of calculating principal stress trajectories in powder and porous materials obeying a piece-wise linear yield criterion // MATEC Web of Conferences. — 2018. — Vol. 220. — P. 01002. The present paper deals with the system of equations comprising the pyramid yield criterion together with the stress equilibrium equations under plane strain conditions. The stress equilibrium equations are written relative to a coordinate system in which the coordinate curves coincide with the trajectories of the principal stress directions. The general solution of the system is found giving a relation connecting the two scale factors for the coordinate curves. This relation is used for developing a method for finding the mapping between the principal lines and Cartesian coordinates with the use of a solution of a hyperbolic system of equations. In particular, the mapping between the principal lines and Cartesian coordinates is given in parametric form with the characteristic coordinates as parameters. [ DOI ]