{CpFe(II)(CO)2Sn(II)(Macrocycle•3–)} Radicals with Intrinsic Charge Transfer from CpFe(CO)2 to Macrocycles (Cp: Cp or Cp*); Effective Magnetic Coupling between Radical Trianionic Macrocycles•3–статья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 6 января 2019 г.

Работа с статьей

[1] {cpfe(ii)(co)2sn(ii)(macrocycle•3–)} radicals with intrinsic charge transfer from cpfe(co)2 to macrocycles (cp: Cp or cp*); effective magnetic coupling between radical trianionic macrocycles•3– / D. V. Konarev, A. V. Kuzmin, M. S. Batov et al. // ACS Omega. — 2018. — Vol. 3, no. 11. — P. 14875–14888. Neutral {CpFe(II)(CO)2[Sn(II)(Pc•3–)]} {Cp is cyclopentadienyl (1, 2) or Cp* is pentamethylcyclopentadienyl (3); Pc: phthalocyanine}, {Cp*Fe(II)(CO)2[Sn(II)(Nc•3–)]} (4, Nc: naphthalocyanine), and {CpFe(II)(CO)2[Sn(II)(TPP•3–)]} (5, TPP: tetraphenylporphyrin) complexes in which CpFe(II)(CO)2 fragments (Cp: Cp or Cp*) are coordinated to SnII(macrocycle•3–) have been obtained. The product complexes were obtained at the reaction of charge transfer from CpFe(I)(CO)2 (Cp: Cp or Cp*) to [Sn(II)(macrocycle2−)] to form the diamagnetic FeII and paramagnetic radical trianionic macrocycles. As a result, these formally neutral complexes contain S = 1/2 spins delocalized over the macrocycles. This provides alternation of the C–Nimine or C–Cmeso bonds in the macrocycles, the appearance of new bands in the near-infrared spectra of the complexes, and blue shift of both Soret and Q-bands. The {CpFe(II)(CO)2Sn(II)(macrocycle•3–)} units (Cp: Cp or Cp*, macrocycle: Pc or Nc) form closely packed π-stacking dimers in 1 and 3 or one-dimensional chains in 2 and 4 with effective π–π interaction between the macrocycles. Such packing allows strong antiferromagnetic coupling between S = 1/2 spins. Magnetic interaction can be described well by the Heisenberg model for the isolated dimers in 1 and 3 with exchange interaction J/kB = −78 and −85 K, respectively. Magnetic behavior of 2 and 4 is described well by the model that includes contributions from an antiferromagnetically coupled S = 1/2 dimer (Jintra) and a Heisenberg S = 1/2 chain with alternating antiferromagnetic spin exchange between the neighbours (Jinter). Compound 2 demonstrates large intradimer interaction of Jintra/kB = −54 K and essentially weaker interdimer exchange interactions of Jinter/kB = −6 K, whereas compound 4 shows strong magnetic coupling of spins within the dimers (Jintra/kB = −170 K) as well as between the dimers (Jinter/kB = −40 K). Compound {CpFe(II)(CO)2[Sn(II)(TPP•3–)]} (5) shows no π–π interactions between the porphyrin macrocycles, and magnetic coupling is weak in this case (Weiss temperature is −5 K). Preparation of a similar complex with indium(III) chloride phthalocyanine yields {CpFe(CO)2[In(Pc2–)]} (6). In this complex, indium(III) atoms are reduced instead of the phthalocyanine macrocycles that explains electron paramagnetic resonance silence of 6 in the 4–295 K range. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть