On the nature of the relaxation time, the Maxwell–Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivityстатья

Статья опубликована в высокорейтинговом журнале
Статья опубликована в журнале из списка Web of Science и/или Scopus

Работа с статьей


[1] Lurie S. A., Belov P. A. On the nature of the relaxation time, the maxwell–cattaneo and fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity // Continuum Mechanics and Thermodynamics. — 2018. We present the theory of space–time elasticity and demonstrate that it is the extended reversible thermodynamics and gives the coupled model of thermoelasticity and heat conductivity and involves traditional thermoelasticity. We formulate the generally covariant variational model’s dynamic thermoelasticity and heat conductivity in which the basic kinematic and static variables are unified tensor objects (subject, matter). Variation statement defines the whole set of the initial-boundary problems for the 4D vector governing equation (Euler equation), the spatial projections of which define motion equations and the time projection gives the heat conductivity equation. We show that space–time elasticity directly implies the Fourier and the Maxwell–Cattaneo laws of heat conduction. However, space–time elasticity is richer than classical thermoelasticity, and it advocates its own equations of motion for coupled thermoelasticity. Moreover, we establish that the Maxwell–Cattaneo law and Fourier law can be defined for the reversible processes as compatibility equations without introducing dissipation. We argue that the present framework of space–time elasticity should prove adequate to describe the thermoelastic phenomena at low temperatures for interpreting the results of molecular simulations of heat conduction in solids and for the optimal heat and stress management in the microelectronic components and the thermoelectric devices. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть