A new method of ionization-neutron calorimeter for direct investigation of high-energy electrons and primary nuclei of cosmic-rays up to the "knee" regionстатья

Статья опубликована в высокорейтинговом журнале

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 июля 2013 г.

Работа с статьей


[1] A new method of ionization-neutron calorimeter for direct investigation of high-energy electrons and primary nuclei of cosmic-rays up to the "knee" region / K. V. Alexandrov, M. Ambrosio, V. V. Ammosov et al. // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 2001. — Vol. 459, no. 1-2. — P. 135–156. A new technique of the Ionization Neutron Calorimeter (INCA) to be installed aboard a satellite or a space station is capable of opening new horizons for cosmic-ray physics. The main goal of the experiment proposed is studying local nearby sources of high-energy cosmic rays by measuring the spectrum and composition of the nuclear component with the energy resolution of better than 30% that is sufficient for solution of these problems in the energy range 0.1-10 PeV, i.e., in the so-called "knee" region, and the spectrum of primary electrons in the energy range 0.1-10 TeV with the proton-background suppression factor up to 10(7). In addition, this experiment can provide new information on the cosmic-ray gamma-radiation in the energy interval 30 GeV-1 TeV, neutrons and gamma-rays from solar flares, and the existence of very massive exotic charged particles in cosmic radiation. The INCA is a calorimeter combining properties of conventional ionization calorimeters and classical neutron monitors. It can measure both the ionization produced by charged particles and evaporation neutrons arising as a result of excitation of heavy-absorber nuclei by cascade particles. The advantages of the INCA are not only excellent electron-proton separation but a high geometry factor of about 2 m(2)sr/ton owing to the INCA optimized composition and shape, whereas conventional ionization calorimeters are usually limited by geometry factor on the order of 0.1 m(2)sr/ton. To verify the INCA concept, a prototype was constructed and exposed to pion and proton accelerator beams with energies of 4 and 70 GeV, respectively, and to an electron beam with an energy of 200-550 MeV. The experimental data obtained agree well with the results of a Monte Carlo simulation by the SHIELD code. (C) 2001 Elsevier Science B.V. All rights reserved. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть