The Decrease of the ESEEM Frequency of P700+A1- Ion‑Radical Pair in Photosystem I Embedded in Trehalose Glassy Matrix at Room Temperature can be Explained by Acceleration of Spin–Lattice Relaxationстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 7 сентября 2018 г.

Работа с статьей


[1] The decrease of the eseem frequency of p700+a1- ion‑radical pair in photosystem i embedded in trehalose glassy matrix at room temperature can be explained by acceleration of spin–lattice relaxation / A. A. Sukhanov, M. D. Mamedov, K. Möbius et al. // Applied Magnetic Resonance. — 2018. — Vol. 49, no. 9. — P. 1011–1025. The main observation in this work is a decrease in the modulation frequency of the primary electron spin-echo decay (ESEEM) of the P700+ cofactor in the reaction center of Photosystem I (PS I) from cyanobacteria Synechocystis sp. PCC 6803 embedded in dry trehalose matrix as the temperature rises from 150 K to room temperature. From the previous studies of the EPR spectrum shape of this system, it is known that, in dry trehalose matrix at room temperature, the distance between P700+ and A1- spins does not increase compared to the distance measured in glycerol– water solution at cryogenic temperature. From the present ESEEM study, we conclude that the decrease of modulation frequency with rising temperature in trehalose matrix can be fully attributed to the influence of accelerated spin–lattice relaxation of A1-. Our calculations show that this requires a decrease in the spin–lattice relaxation time from 3 to 1 μs. To the best of our knowledge, this is the first time that a shift in the ESEEM frequency due to the dipole–dipole interaction between the spins is observed that is caused by spin–lattice relaxation. Based on the above-mentioned results, we formulate a model of the protective effect of trehalose matrix on the electron transfer in the reaction center of PS I that is based on different hydrogen-bond networks between trehalose, local water, and protein. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть