The group $G_{n}^{2}$ and invariants of free links valued in free groupsстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 17 апреля 2018 г.

Работа с статьей


[1] Manturov V. O., Kim S. The group g_{n}{2} and invariants of free links valued in free groups // Journal of Knot Theory and its Ramifications. — 2015. — Vol. 24, no. 13. — P. 1541010–1–1541010–15. In this paper, we define an invariant of free links valued in a free product of some copies of ℤ2. In [Non-Reidemeister knot theory and its applications in dynamical systems, geometry, and topology, preprint (2015), arXiv:1501.05208v1] the second author constructed a connection between classical braid group and group presentation generated by elements corresponding to horizontal trisecants. This approach does not apply to links nor tangles because it requires that when counting trisecants, we have the same number of points at each level. For general tangles, trisecants passing through one component twice may occur. Free links can be obtained from tangles by attaching two end points of each component. We shall construct an invariant of free links and free tangles valued in groups as follows: we associate elements in the groups with 4-valent vertices of free tangles (or free links). For a free link with enumerated component, we “read” all the intersections when traversing a given component and write them as a group element. The problem of “pure crossings” of a component with itself by using the following statement: if two diagrams with no pure crossings are equivalent then they are equivalent by a sequence of moves where no intermediate diagram has a pure crossing. This statement is a result of a sort that an equivalence relation within a subset coincides with the equivalence relation induced from a larger set and it is interesting by itself. Read More: https://www.worldscientific.com/doi/abs/10.1142/S0218216515410102. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть